
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0

Brotli: A general-purpose data compressor

JYRKI ALAKUIJALA, Google Research
ANDREA FARRUGGIA, Università di Pisa
PAOLO FERRAGINA, Università di Pisa
EUGENE KLIUCHNIKOV, Google Research
ROBERT OBRYK, Google Research
ZOLTAN SZABADKA, Google Research
LODE VANDEVENNE, Google Research

Brotli is an open-source general-purpose data compressor introduced by Google in late 2013,
and now adopted in most known browsers and Web servers. It is publicly available on GitHub
and its data format was submitted as RFC 7932 in July 2016 . Brotli is based on the Lempel-Ziv
compression scheme and planned as a generic replacement of Gzip and ZLib. The main goal in its
design was to compress data on the Internet, which meant optimizing the resources used at decoding
time, while achieving maximal compression density.

This paper is intended to provide the first thorough, systematic description of the Brotli format as
well as a detailed computational and experimental analysis of the main algorithmic blocks underlying
the current encoder implementation, together with a comparison against compressors of di�erent
families constituting the state-of-the-art either in practice or in theory. This treatment will allow us
to raise a set of new algorithmic and software engineering problems that deserve further attention
from the scientific community.

CCS Concepts: • Theory of computation � Data compression; Pattern matching; Problems, reduc-
tions and completeness; Shortest paths; • Mathematics of computing � Coding theory; • Information
systems � Information storage systems; Storage management;

Additional Key Words and Phrases: Data Compression, Lempel-Ziv parsing, Treaps, NP-completeness,
Shortest Paths, Experiments

ACM Reference format:
Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert Obryk, Zoltan
Szabadka, and Lode Vandevenne. 2017. Brotli: A general-purpose data compressor. ACM Trans.
Comput. Syst. 0, 0, Article 0 (2017), 32 pages.
https://doi.org/0000001.0000001_2

This work has been partially supported by a Google Faculty Research Award, winter 2016. Andrea Farruggia
is currently at Google, Zurich (Switzerland).
Author’s addresses: P. Ferragina, Dipartimento di Informatica, Largo B. Pontecorvo 3, 56127 Pisa, Italy; all
other authors are with Google, Brandschenkestrasse 110, 8002 Zürich, Switzerland.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
0734-2071/2017/0-ART0 $15.00
https://doi.org/0000001.0000001_2

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

0:2 Alakuijala, J. et al

1 INTRODUCTION
In the quest for the ultimate data compressor, algorithmic theory and engineering go hand in
hand. This point is well illustrated by the number of results and implementations originated
by the fundamental achievements due to Lempel and Ziv (at the end of the 1970s) and
to Burrows and Wheeler (at the end of the 1980s), who introduced two main paradigms
for e�caciously compressing arbitrary data [21, 27]: namely, dictionary-based compression
[28, 29] and BWT-based compression [4, 11]. Algorithms are known in both families that
require theoretically linear time in the input size, both for compressing and decompressing
data, and achieve compressed space that can be bound in terms of the k-th order empirical
entropy of the input.

However, theoretically e�cient compressors are either optimal in obsolete models of compu-
tations (like the RAM model) and thus turn out to be slow in practice, or they solve problems
that are somehow far from the ones arising in real applications. The latter, increasingly, are
adding new algorithmic challenges arising from new networking and hierarchical-memory
features, as well as the very diverse entropy sources involved in the compression process,
such as text documents, source code, structured data, images, and a variety of other data
types. As a result, the compressors running behind real-world large-scale storage systems are
very sophisticated in that they combine some of these theoretical achievements with several
heuristics and technicalities that are often hidden in the software and whose algorithmic
motivations and performance are di�cult to discover or prove.

At a W3C meeting in late 2013, Google introduced Brotli,1 which was initially designed
as a compressor for Web fonts2, then extended to be an HTTP compressor (September 2015).
Its data format was submitted as RFC 7932 in July 2016 [1]. Brotli is an open-source data
compression library3 developed by Jyrki Alakuijala and Zoltán Szabadka (two of the authors
of this paper) based on the Lempel-Ziv compression scheme and intended as a generic
replacement of Gzip and ZLib. The main goal in Brotli’s design was to achieve maximal
compression density, even on very short files (around 55kB), based on a pseudo-optimal
entropy encoding of LZ77-phrases that does not slow down the decoding speed from that of
Gzip and deflate. Specific attention was devoted to compressing data on the Internet, which
meant optimizing the resources used at decoding time, be they the memory necessary for
the backward reference window or the memory consumption due to the several compressed
transfers open at the same time by a browser. These requirements forced us to inject
into Brotli many novel algorithmic solutions that make it very di�erent from all the other
compressors in the LZ-family, such as: (i) hybrid parsing of the input text in LZ-phrases and
long runs of literals driven by a pseudo-optimal Shortest Path scheme derived from Zopfli
(a compressor previously proposed by Google [26]4); (ii) Hu�man encoding of LZ-phrases
based on second-order models, re-use of entropy codes, and relative encoding of distances to
take advantage of locality of references; (iii) optimization of the number of Hu�man models
available and the proper block splitting, based on clustering symbol distributions, in order
to further reduce the compressed space and the cache-misses at decompression time; (iv) a
static dictionary (composed of strings of variable length, along with a set of transformations
that can be applied to such strings) constructed to improve the compression of small files.

1Brotli is a Swiss German word for a bread roll and literally means “small bread”.
2See WOFF 2.0 at https://www.w3.org/TR/2016/CR-WOFF2-20160315/.
3See https://github.com/google/brotli.
4Zopfli is a Swiss German word for a braided sweet bread and literally means “little plait”.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Brotli: A general-purpose data compressor 0:3

Because of its performance Brotli is currently adopted in most known browsers – Google
Chrome (since version 50), Microsoft Edge (since version 15), Mozilla Firefox (since version
44), Opera (since version 38) – and in Web servers, such as Apache HTTP Server and
Microsoft IIS. For an updated picture of this usage we refer the reader to the CanIUse site5.

However, apart from the public availability of Brotli’s code on GitHub and a few technical
posts that have appeared on the Web, which sketch the main features of the compressor
and provide some figures on its overall performance, no detailed description of Brotli’s inner
algorithmic choices and workings have been “disclosed” to the public, probably because of its
sophisticated design choices, which are di�cult to derive directly from the code. This paper
is intended to fill this scientific gap by o�ering the first thorough, systematic description of
the Brotli format, as defined in RFC7932 [1], as well as an analysis of the main algorithmic
blocks underlying the current encoder implementation. On the algorithmic side, particular
attention will be devoted to study the highest quality compression (range 10–11), which is
best suited for compress-once-decompress-many needs. In this respect we will analyze the
complexity of the LZ77-parsing problem dealt with in Brotli and show that one of its variants
is N P-hard. We will also discuss analytically and experimentally the e�cacy of the heuristic
proposed to solve it by comparing its result against the one computed by another recent
compression scheme, named Bc-Zip [9, 10], which is based on an optimization approach
that achieves performance guarantees in trading decompression speed for compressed space
occupancy. On the experimental side, we will supplement the algorithmic analysis of Brotli’s
components with an evaluation of their individual impact on its final performance, together
with a comparison against compressors of di�erent families constituting the state-of-the-art
either in practice or in theory. The ultimate take-away message of this paper will be a set of
algorithmic problems that deserve further attention from the scientific community because
their e�cient solution could improve Brotli, shed more light on its e�cacious design choices,
and eventually lead to new compression tools.

This paper is organized as follows. Section 2 o�ers a high-level description of the algorithmic
structure of Brotli by identifying two main phases that are detailed in Section 3 and Section 4.
In the former section we state the problem of computing a good entropic LZ77-parsing of
the input data; show in Appendix A that a significant variant is N P-hard; then detail the
algorithm and its corresponding data structures devised in Brotli to provide an approximate
solution in e�cient time (Subsection 3.1). We will devote special attention to describing the
use that Brotli makes of a dynamic Treap in order to find the “best” LZ77-phrases that are
then used to populate a weighted DAG over which a “special” shortest path computation

will be performed. That shortest path will provide an LZ77-parsing whose compressed-space
performance will be evaluated in Subsection 3.2 by experimentally comparing it against the
principled LZ77-parsing produced by Bc-Zip. This comparison will show the pros and cons
of each one of those strategies and indicate, on the one hand, some interesting variants that
are tested to show the robustness in e�ciency and e�cacy of Brotli’s approach and, on the
other hand, some open problems that need further attention from the research community
and are thus stated for future investigation.

Section 4 will detail how Brotli encodes the LZ77-phrases identified by the first phase
above. This section includes most of the software engineering tricks that allow Brotli to
achieve a succinct encoding of those phrases over arbitrary file types and short file lengths,
such as the ones indicated with (i)–(iv) above. We will aim at keeping this discussion as
much as possible at the algorithmic level, thus avoiding any specific technicalities (for which
5
http://caniuse.com/#search=brotli

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

0:4 Alakuijala, J. et al

we refer the reader to the Github repository and to RFC 7932 [1]), while still o�ering enough
details to allow us to comment on the impact of the various compression steps, experimented
in Subsection 4.1.

Section 5 will o�er a thorough, systematic experimental evaluation of Brotli’s performance
and its comparison with several other compressors that are “optimal” in some scientifically
accurate meaning of the term (LZOpt [12], Booster [11]); that are the most well-known
members of some data compression family (i.e. Gzip, Bzip2, PPMD [21, 27], xz [7, 20]); that are
the state-of-the-art in o�ering high decompression speed and very good compression ratio (i.e.
LZHAM [14], LZFSE [16], Zopfli [26], ZStd [6]); or that o�er the highest decompression speeds
(i.e. LZ4 [5], Snappy [17]). These experiments will be performed over three well-known sets of
files of various kinds and lengths, thus providing a thorough picture of Brotli’s performance
against state-of-the-art compressors in various settings.6 We believe that these figures, apart
from being meaningful per se, can inspire the research upon new data-compression problems
as stated in the concluding Section 6.

2 AN OVERVIEW OF BROTLI
The encoder library of Brotli o�ers 12 quality levels (from 0 to 11). They are compression
modes that trade compression speed for compression e�ectiveness: higher quality levels are
slower but yield better compression ratios. Our discussion will concentrate on the last quality
level, 11, where all of Brotli’s algorithmic novelties are deployed.

A Brotli compressed file is composed of a collection of so-called meta-blocks. Each meta-
block holds up to 16 MiB and is composed of two parts: a data part, which stores the
LZ77-compressed input block, and a header, which contains information needed to decode
the data part. The compression of each block follows the classic LZ77-compression scheme
and consists of two main phases:

Phase I: Compute a good entropic LZ77-parsing – The goal of this phase is to compute
an LZ77-parsing that ensures good entropic properties about the distribution of the
features describing its constituting LZ77-phrases. These properties will be exploited in
Phase II via a specific collection of Hu�man codes, whose structure and algorithmic
properties will be detailed next, in order to achieve a dense compressed output for
that meta-block.
Every LZ77-phrase describes a substring of the meta-block by means of a copy part and
a literal part. The copy part can refer either to a substring previously occurring in the
sliding window (possibly a previous meta-block) or to an entry in a static dictionary
that has been fixed in advance and thus is not transmitted with the compressed block.
The literal part consists of a sequence of literals explicitly stored in the compressed
stream. Such substrings are encoded in a sophisticated way through Brotli commands,
here simplified to highlight the most important algorithmic issues (for details see RFC
7932 [1]). A Brotli-command consists of a quadruplet:

(copy length, copy distance, literals length, sequence of literals)

The integers copy length and literals length encode the length of the copy part and the
length of the literal part, respectively. The copy distance refers either to the distance
of the previous occurrence of the same substring in the sliding window (possibly a
previous meta-block) or to an entry in the static dictionary. The static dictionary

6For other types of benchmarks, please refer to: https://quixdb.github.io/squash-benchmark/.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Brotli: A general-purpose data compressor 0:5

is composed of a set of “base words”, i.e., strings of di�erent lengths, along with a
set of transformations that can be applied to such words. Each base word and the
transformation applied to it are encoded in the copy distance via a proper encoding
scheme detailed in the RFC above. Brotli distinguishes between the two cases (copy
from before or copy from the dictionary) as follows: if the copy distance is less than
some value, defined in terms of the sliding window and the starting position of the
current command in the text, then the copy part points to a previous substring of
length copy length and distance copy distance; otherwise the copy part is an entry in
the static dictionary.

Phase II: Compute a succinct encoding of LZ-phrases – Every component of a Brotli com-
mand is compressed by means of a properly designed Hu�man code (see the RFC [1] for
details, or [25, 27] for classic references on the subject). However, instead of using just

one Hu�man code to compress all the values in each command, Brotli defines a sophisti-
cated compressed format that employs a variable number of Hu�man codes to achieve
a greater compression ratio. This choice is motivated by the fact that the distribution
of the frequency of a symbol is strongly influenced by its kind (whether it is a length, a
distance, or a literal), its context (i.e., its neighboring symbols), and its position in the

text. Briefly (since we will give further details in the next sections), each meta-block
stores in the header the collection of Hu�man codes that are used to compress the
commands contained in its data part. The set of “symbols” occurring in the fields of
the commands are logically organized into three di�erent and independently handled
streams: namely length, distance, and literal. Each stream is further partitioned into
blocks; finally, blocks are clustered and each cluster of blocks is assigned a numerical,
distinct block id. Both the partitioning and the clustering are performed by taking
into account the entropic properties of the underlying set of symbols occurring in the
clustered blocks. For example, if the files to be compressed have mixed content (such as
HTML pages, JSON snippets, etc.), then block boundaries might mark the beginning
and the end of the di�erent homogeneous parts, and clustering could group together
file parts that express homogeneous content spread all around these files.
For lengths, all values laying in blocks with the same block id are encoded using the
same Hu�man code. For distances and literals, the choice of the Hu�man code to use
does not depend solely on the block id but also on their context, so each cluster of
blocks employs not just one Hu�man code but a set of Hu�man codes of canonical
type, whose preamble is further compressed as detailed in Section 3.5 of [1]. Section 4
better illustrates these algorithmic steps.
As a last optimization Brotli exploits the fact that in many kinds of texts, such as
natural language or tabular data, there are substrings that are equal except for small
di�erences such as substitution, insertion, or deletion of few characters. Brotli then
deploys relative (copy) distances which express the delta between the current copy-
distance and the previous copy-distance in the compressed stream. In this way a run of
slightly di�erent distances in the compressed stream is changed into a run of relative

distances, which should take less compressed space.
The choice of this sophisticated encoding format makes the goal of Phases I and II
ambitious, namely to compute the LZ77-parsing of the input meta-block that admits a
block partitioning and clustering that yields the lowest Hu�man-compressed size for
the resulting streams of symbols originated from the LZ77-phrases.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

0:6 Alakuijala, J. et al

In the next sections we illustrate the algorithms adopted by the implementation of Brotli,
which is open-source and available to the public at GitHub (see footnote 3), to address the
challenges posed by both phases, along with a thorough experimental evaluation of their
time/space e�ectiveness. In doing so, we will concentrate on a series of algorithmic problems

that arose from the implementation of Brotli and we will relate them to what is known in
the literature in order to characterize their novelties, special features, and future challenges
posed to algorithm researchers. Therefore, this paper is not to be read only as the description
of an “e�cient and e�cacious compressor” but also, in our opinion, as the collection of new
algorithmic and engineering problems in the data compression and string-matching realms.
In particular, in Section 3, we will prove that the LZ77-parsing problem dealt in Brotli in
its Phase I is computationally di�cult and then highlight some new algorithmic challenges
whose solutions could impact beneficially onto the design of Brotli itself. In addition, we
will compare Brotli’s algorithms with the bicriteria data compressor, recently introduced in
[10], in order to highlight their similarities and, more importantly, their di�erences. This
will allow us to identify new interesting venues for algorithmic research that deserve much
attention from the scientific community. Phase II is, instead, much newer in its design
and thus we will discuss it from an algorithm-engineering point of view with the goal of
describing Brotli’s solutions and their challenges, which are left open for future research.
All our algorithmic discussions are enriched by a thorough experimental analysis of Brotli’s
modules, with the intention of supporting our theoretical considerations on engineering and
performance grounds, which should make it evident that algorithmic contributions in this
setting could induce significant contributions onto Brotli’s performance in practice.

3 PHASE I: COMPUTE A GOOD ENTROPIC LZ77-PARSING
The classic definition of LZ77-parsing of a string S, having length n and built over an
alphabet � = [‡], is as follows [27]: it consists of a sequence of phrases p1, . . . , pk such that
phrase pi is either a single character of � (encoded as È0, cÍ) or a substring that occurs in
the prefix p1 · · · pi≠1, and thus it can be copied from there. Once the LZ77-parsing has been
identified, each phrase is represented via pairs of integers Èd, ¸Í, where d is the distance from
the (previous) position where the copied phrase occurs, and ¸ is its length.

The main insight used in the most e�cient LZ77-parsing strategies to date (see e.g.
[9, 10, 13, 22]) is to represent every parsing of S as a path over a weighted graph G in which
each vertex vi corresponds to position i in S, and each edge (vi, vj) corresponds to a possible
LZ77-phrase, whose cost is given by the number of bits needed to encode it according to a
chosen compressed scheme (to be detailed next). This way, the most succinct LZ77-parsing
of S corresponds to the Single-Source Shortest Path (SSSP, for short) from v1 to vn over G.
Since G is a DAG, a SSSP can be computed in time linear in the number of graph edges.
Unfortunately, however, G might have �(n2) edges, such as when S = an. Therefore, a
central aspect related to the e�ciency of such methods is identifying asymptotically-smaller
subgraphs of G that retain an optimal SSSP. An algorithmic cornerstone in e�ciently solving
the SSSP problem on such subgraphs relies on designing an e�cient Forward Star Generation

(FSG) strategy, that is, an algorithm that generates such subgraphs on-the-fly along with
their SSSP. This is an inevitable requirement because it would take too much time to
materialize the entire G and then prune it.

The known algorithms for graph-pruning and FSG rely on the properties of the (class of)
encoders used to compress the LZ77-phrases, since they determine the edge weights. For the
simplest case of encoders based on fixed-length codewords, each edge has the same weight

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Brotli: A general-purpose data compressor 0:7

and so the SSSP-computation boils down to the problem of finding a path with a minimal
number of edges. It is very well known that the greedy FSG strategy, which selects the edge
representing the longest copy at each vertex, yields an optimal solution: so, in this case, G

can be pruned to a graph with just O(n) edges. However, a fixed-length codeword encoder
needs 2 log n bits per LZ77-phrase, which results in a very poor compression ratio. For the
more interesting case of universal integer coders, Ferragina et al. [13] proposed a pruning
strategy (hereafter denoted by Fast-FSG) that generates a small subgraph of G of O(n log n)
edges, taking O(1) amortized time per edge and O(n) words of space. That subgraph was
proved to include an optimal SSSP.

In this paper we take one step further and investigate, for the first time in the literature, the
complexity of the Minimum-Entropy LZ77-Parsing Problem, namely, the problem of finding
the most succinct LZ77-parsing in which entropic statistical encoders (such as Hu�man or
Arithmetic) are used to compress the LZ77-phrases. In the language of SSSP and graph G,
the goal is to compute the SSSP of a weighted graph G in which entropic statistical encoders
are used to define the edge weights. The change in the time complexity of the problem with
respect to the other formulations is not negligible as will be apparent soon.

Definition 1. The minimum-entropy LZ77 parsing problem (MELZ, for short) asks

for a LZ77-parsing fi of an input string S that achieves the minimum bit encoding when

copy-lengths and copy-distances of the LZ77-phrases in fi are compressed using two (possibly

di�erent) entropy coders.

Formally speaking, let dists(fi) (resp. lens(fi)) denote the sequence of copy-distances d
(resp. copy-lengths ¸), taken from all LZ77-phrases Èd, ¸Í in fi, where d may be 0, in which

case ¸ denotes a singleton character. The problem MELZ asks for a parsing fi that minimizes

the function: sı (fi) = |fi| · (H0 (dists(fi)) +H0 (lens(fi))).

This is arguably the most interesting version of the LZ77-parsing problem discussed to date
in the literature, because entropic encoders consistently yield the most succinct compressed
files in practice, and indeed they are the choice in most industrial-grade compressors, dating
back to gzip. Unfortunately, the techniques developed for the universal coding case [10, 13]
cannot be readily extended to handle this case, as the cost in bits of an LZ77-phrase (and
thus the weight of an edge in G) depends on the empirical distribution of the distance- and
length-components of all other LZ77-phrases already selected for the current parsing, so they
cannot be fixed in advance when instantiating the graph G. This makes the MELZ problem
very di�cult to solve intuitively and in fact we prove in Appendix A that a significant
variant of it is N P-Hard. Nevertheless, Brotli provides an e�cient heuristic for finding an
entropically-good parsing fi, as detailed in the next section.

3.1 The parsing strategy adopted by Brotli
Given the computational di�culty of devising an e�cient and optimal minimum-entropy
parsing strategy, Brotli deploys a sophisticated heuristic inspired by the theoretical founda-
tions laid down by the optimal LZ77-parsing previously outlined. As such, parsing is recast
as a shortest path problem on a weighted DAG G with the addition of some approximations
that are employed to achieve an e�cient, practical algorithm that deals with the eventual
use of Hu�man codes. The main technical challenges tackled by Brotli are thus (i) devising
a suitable strategy that assigns an entropic cost to edges in G (see below for a definition),
(ii) defining a suitable sub-graph ÂG of G that includes a close approximation of the optimal

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

0:8 Alakuijala, J. et al

SSSP, and (iii) designing an e�cient FSG algorithm for generating on-the-fly ÂG along with
the computation of its SSSP.

Assigning “entropic” weights to G’s edges. As mentioned earlier, it is not possible to
precisely assign bit costs to edges in G because the cost of a LZ77-phrase depends on
the empirical distributions of copy-distance and copy-length components in the parsing.
Therefore, the approach taken by Brotli is to approximate these weights through a sequence
of cost models c1, c2, . . . where each ci+1 assigns to the LZ77-phrase Èd, ¸Í a cost ci+1 (d, ¸)
that depends on the result of the SSSP computation over the graph G weighted with costs
ci. More specifically, the first cost model c1 assigns to each edge a constant cost; while the
subsequent cost models ci+1 are defined by first computing a shortest path fiı

i on G weighted
according to the previous cost model ci and then assigning to the edge corresponding to the
LZ77-phrase Èd, ¸Í the entropic cost ci+1 (d, ¸) = log

1
n

#Dists(d, fiı
i)

2
+ log

1
n

#Lens(¸, fiı
i)

2
. This

process could stop when the di�erence between the costs of the last two shortest paths falls
below a fixed threshold: the last path provides the LZ77-parsing returned by Phase I. In
practice Brotli chooses to stop after just two iterations, because our systematic tests over a
large (proprietary) dataset showed that this gave the best trading between SSSP encoding
and time e�ciency.

Defining a suitable subgraph ÂG. The pruning strategies proposed in the literature are based
on some specific properties of fixed-length codes or universal codes [13] that do not hold
for the statistical codes we wish to deal with. Brotli devises an e�ective pruning strategy
that hinges upon the following simple observation: short copies do typically occur close to
the current position to be matched, whereas long copies are typically found farther in the
input text. This implies that small distances have higher frequencies than long distances,
but the latter typically refer to longer copies than the former. In terms of space occupancy,
this means that far&long copies are able to amortize the bit cost incurred by long distances
because they squeeze long phrases. Brotli tries to reinforce this dichotomy (close&short
copies versus far&long copies) at each iteration of the SSSP computation by only considering
dominating edges, namely edges for which there is no other edge outgoing from the same
vertex that corresponds to a longer, or equally long, and closer copy. Conversely, we say that
the latter edges are dominated by the former one.

Handling runs of literals. From Section 2 we know that a Brotli-command is composed
of a LZ77-like copy component followed by a sequence of literals, while our definition of G

involves only LZ77-like copy phrases. A natural and conceptually simple way to handle this
is to change the definition of G by extending the edges in G in order to include literal runs
of di�erent lengths. However, this must be done cautiously because the resulting graph G

would eventually acquire �(n2) edges. To tackle this Brotli defines two classes of edges: one
for copies and one for literal runs. Any path in G will be composed of a mix of copy and
literal edges, which will eventually be fused and represented as single Brotli-commands in
the encoding phase.

Literal edges are handled di�erently from copy edges. Let us assume that the shortest path
computation has already found the shortest paths from v1 to vertexes v2, . . . , vi≠1 and must
process vertex vi: while for copy edges we update the cost of successive vertexes vj1 , vj2 , . . . by
generating the forward star of vi, namely (vi, vj1), (vi, vj2), . . .; for the literal edges we update
the cost of vi by considering the backward star of vi, namely (v1, vi), (v2, vi), . . . , (vi≠1, vi).
This could be time consuming, so Brotli reduces the number of incoming edges to just one edge

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Brotli: A general-purpose data compressor 0:9

Distance

Le
ng

th

(a) All dominated copies
Distance

Le
ng

th

(b) Copies selected by Fast-FSG (circled).

Fig. 1. An illustration of dominating copies. Each substring copy is depicted as a point in the Cartesian
space with distances on the x-axis and lengths on the y-axis. In the plots, dominated copies are gray while
dominating copies are blue. Figure (a) shows all dominated/dominating copies, while Figure (b) highlights
in green the dominating copies selected by Fast-FSG. Recall that Fast-FSG selects one dominating copy
per "window" of text preceding the currently examined position. In the picture, copies are illustrated for
increasing distance from the current position, these windows are nested and extend from the y-axis to
each vertical bar, with – = 2.

through the following observation. Let LitCost(k, l) be the cost of representing the substring
B[k, l ≠ 1] as a literal run in a Brotli command, and let cı (i) be the cost of the shortest path
from v1 to vi. The cost of the shortest path from v1 to vi with a literal run as the last edge
is given by mini≠1

j=1 {cı (j) +LitCost(j + 1, i)} = mini≠1
j=1 {cı (j) +LitCost(1, i)≠ LitCost(1, j)} =

LitCost(1, i) +mini≠1
j=1 {cı (j) ≠ LitCost(1, j)}. This search can be accelerated to O(1) time

by keeping the vertex vj that minimizes cı (j) ≠ LitCost(1, j) among the vertexes vj that
precede vi in G via a proper priority queue data structure. Actually, Brotli employs a queue

of positions, sorted according to the expression illustrated above, in order to take care of
the possibility to relatively-encode the distance of the back references (see Section 4).

An e�cient FSG algorithm. The final algorithmic challenge of Phase I is to compute
e�ciently the dominating edges outgoing from each vertex in the pruned graph ÂG (see Figure
1a). Brotli is based upon a strategy that we denote here as Treap-FSG, and for simplicity of
description we assume that the meta-block coincides with the compression window in which
LZ77-copies can be searched for. It processes the input meta-block B via a single left-to-right
scan driven by an iterator i such that a dynamic Treap T [23] indexes the pairs ÈSj , jÍ where
Sj = B[j, n] is the j-th su�x of the meta-block and j < i. We remind the reader that a Treap
is a binary tree in which the keys (here, su�xes of B) are organized as in a binary search
tree via their lexicographic order, whereas the priorities (here, positions of the su�xes) are
organized as in a max-heap; this way, the closer the starting position of a su�x Sj is to the
currently processed meta-block’s position i, the closer the pair ÈSj , jÍ is to the heap’s root.

Figure 2 shows an example of a static Treap built over the entire string B = ananas. The
Treap is defined recursively on the set of six pairs {Èananas, 1Í, Ènanas, 2Í, Èanas, 3Í, Ènas,
4Í, Èas, 5Í, Ès, 6Í}. The root is labeled with the pair Ès, 6Í which is the one in the set having
the maximum priority. This selection splits the set into two subsets: the pairs corresponding
to su�xes that are lexicographically smaller than s, and the pairs corresponding to su�xes
that are lexicographically larger than s. The latter subset is empty in our example, so
that the right child of the T ’s root is NULL; all the other pairs will be then used to build
recursively the Treap forming the left child of the root.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

0:10 Alakuijala, J. et al

Fig. 2. A Treap built on the string B = ananas, positions are counted from 1. Every node contains the
pair ÈSj , jÍ where Sj is the j-th su�x of B.

Let us now go back to the description of the algorithm Treap-FSG. At a generic step, it
processes some su�x Si by searching it into the current Treap T (recall that it contains
su�xes Sj starting at previous positions j < i). Let Si1 , . . . , Sim be the sequence of su�xes
examined by the search for Si in T . The algorithm first determines the set of LZ77-phrases
{Èdij , ¸ij Í}

m
j=1 corresponding to these su�xes via a comparison between Si against each

su�x Sij and setting dij = i ≠ ij and ¸ij = Lcp
!
Si, Sij

"
; secondly, su�x Si is inserted into

T as a pair ÈSi, iÍ and brought to its root (because the Treap contains pairs ÈSj , jÍ with
j < i) via proper tree rotations (as detailed in [23]); finally, the set of dominating copies
MT

i is extracted from {Èdij , ¸ij Í}
m
j=1 and returned to the shortest path computation.

Property 1. Algorithm Treap-FSG returns all dominating copies starting at each position

i in B[1, n].

Proof. Let Mı
i be the set of all dominating copies starting from position i of B. A search

in T works by percolating the binary tree and thus restricting the lexicographically-sorted
range su�xes [L, R] such that L < B[i, n] < R. Recall that those su�xes start before position
i since they have been previously inserted in the Treap. Initially, we can assume that L is
the empty string, and R is the infinite string consisting of repeating the largest possible
character. Since T is a binary search tree over the lexicographic order of its indexed su�xes,
the search at a node x updates L with the su�x at this node if the comparison leads to
follow the right child, otherwise it updates R. In order to drive the lexicographic search, the
algorithm computes the Lcp between the searched su�x B[i, n] and the su�x at node x.

Now, in order to prove the statement above, we have to consider the two possible cases
(we will interchangeably talk about nodes in T and su�xes stored into them).

Case x œ MT
i =∆ x œ Mı

i . Let us assume, by contradiction, that x œ MT
i but x <Mı

i ,
so x has been returned by Treap-FSG and there is a longer copy z œ Mı

i that dominates
x. This means that z denotes a su�x which starts after x’s su�x in B and shares
a longer Lcp with B[i, n]. Since we assumed that x œ MT

i , then x is returned by
Treap-FSG but the node z is not returned. The latter implies that the search has
not encountered z during the search for B[i, n], even if z should appear higher in the
Treap because it occurs after x in B (remember the max-heap property on the su�xes’
positions). Therefore there must exist an ancestor y œ T of x that makes the search for
B[i, n] diverge from z and lead to x. Assuming that z < y < x holds (the other case is
symmetric and not treated here), then the lexicographic comparison between y and
B[i, n] cannot lead to the right (i.e. towards x) because Lcp(z, B[i, n]) > Lcp(x, B[i, n])

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Brotli: A general-purpose data compressor 0:11

by the dominating hypothesis above. Hence it should go to the left (i.e. towards z)
thus leading to the contradiction.

Case x œ Mı
i =∆ x œ MT

i . Since x is a dominating su�x, all su�xes that occur after
x in B (and before i) share an Lcp with B[i, n] shorter than ¸ = Lcp(B[i, n], x). Our
goal is to show that the search for B[i, n] in T must meet node x, and thus must insert
it into MT

i . Let us consider the root-to-x path fi in T : where fi = y1 y2 · · · yk x. Any
node yj œ fi is a su�x occurring after x in B (because of the max-heap property on the
su�xes’ position) and sharing an Lcp

!
yj , B[i, n]

"
< ¸ (because of the above dominating

property of x). Therefore, when the search for B[i, n] is in yj , it must continue on the
child yj+1 because Lcp

!
yj , B[i, n]

"
< ¸ = Lcp(B[i, n], x) and x descends from yj+1.

⇤

The time e�ciency of Treap-FSG depends on the number of nodes traversed during the
search for B[i, n], since the Lcp-computation can be performed in O(1) time through the
proper use of a Su�x Array built on B and a Range-Minimum Query data structure built
on top of the Lcp array [3]. To this end, we can adopt the analysis of Allen and Munro [2]
taking care of the fact that the Treap T can be looked at as a sort of self-adjusting tree
with insertion driven by a move-to-the-root heuristic, as shown in the following property.

Property 2. Algorithm Treap-FSG requires �(n/ log2
‡ n) node visits per examined position

in B, where n = |B|.

Proof. Let i1, i2, . . . , im be a permutation of the first m = n
log‡ n integers that takes

�(m2) time to be inserted in a tree with a move-to-the-root balancing strategy. Let ‹ and
€ be, respectively, the smallest and greatest symbols in �. Finally, let sj be the textual
representation in base ‡ ≠ 1 of the integer ij , padded with enough ‹ on the left if shorter
than 1 + Âlog‡≠1 mÊ. Notice that the textual representation reflects the ordering of integers:
i.e. sj < sk i� ij < ik.

We construct the text B = €s1€s2 · · · €sm and process it via the algorithm Treap-FSG.
The insertion of all su�xes starting at symbols € requires the visit of �(m2) nodes in
the Treap, because of the definition of sequence i1, . . . , im and the observation above
on the ordering correspondence between integers ij and strings sj . Given that B has
length m(1 + log‡≠1 m) = O(m log‡ m) = �(n), then the average work per position is
�(m2/n) = �(n/ log2

‡ n) and so this is the worst-case too. ⇤

The worst-case complexity of Treap-FSG is thus not very appealing. It could be observed
that the self-adjusting strategy has indeed a much better amortized complexity of O(log n) [24]
but, unfortunately, this argument cannot be applied here because the “splay” operation
used by Treap-FSG would break the heap property of the Treap. Nevertheless, Brotli avoids
all these problems with an implementation of the FSG-strategy, called hereafter Brotli-FSG,
which adds a few e�ective heuristics on top of Treap-FSG that are based on constants derived
from a systematic experimental analysis over a large (proprietary) corpus of variegate file
types (see also RFC 7932 [1] for details):

Top Pruning of the Treap: Since meta-blocks of few MBs, as the ones managed by Brotli,
contain most probably every possible sequence of four characters, it is convenient to
distinguish between short copies and long copies. More precisely, Brotli-FSG handles
“short&close” copies with length ¸ Æ 4 and distance d < 64 through char-by-char
comparison, while it manages copies of length ¸ > 4 by using a forest of Treaps, each
one containing su�xes that start with the same 4-chars prefix. The rationale is that

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

0:12 Alakuijala, J. et al

small copies are convenient in terms of space compression only when their distance
is small and their search is sped up by a direct char-by-char comparison instead of a
Treap navigation.

Bottom Pruning of the Treap: Each Treap in the forest discards nodes that are at dis-
tance greater than 64 from the root. Due to the max-heap property, this implies
discarding su�xes that are farthest away from the currently examined position. As a
result, some of these discarded su�xes could be dominating copies, and they would be
lost by Brotli-FSG (more on this issue next).

Skipping Su�xes: When a copy of length ¸ > 325 is found, the su�xes starting in the
next ¸ ≠ 64 positions are neither searched nor inserted into the Treap. The rationale
behind this is that the parsing almost surely would select this long copy in the shortest
path computation, and so the edges starting in the next positions would not be used.
However, the su�xes starting in the last 64 characters covered by the copy are anyway
inserted into the Treap because they could induce dominating copies for later positions
in the text of not negligible length.

Stopping Condition and Copy Elision: When a copy of length ¸ > 128 is found in a
Treap, the search is stopped and the node corresponding to that copy is removed
from the Treap, whereas the currently searched su�x is inserted into that node. The
rationale is that, even if the discarded su�x could originate a longer Lcp in a subsequent
search with respect to what can be obtained with B[i, n], the latter provides in any
case a copy of at least 128 chars, which is considered “good enough”. This strategy
makes it possible to trade better running times for a (likely) small degradation in the
succinctness of the LZ77-copies.

Notice that all these tweaks imply that the algorithm might not find all dominating copies
for each position (in fact, it cannot find more than 64 copies per position, given the pruning
at depth 64 of T) and that it might output some dominated copies in lieu of the dominating
ones. The next section will investigate experimentally the impact of these optimizations on
the quality of the copies returned with the navigation of the Treap.

3.2 Experimental results
All the experiments presented in this section, and in the rest of the paper, will be performed
over three files of di�erent types and 1GiB in size each. These files have been built by
extracting one block of that size, starting at a random position, within three classic datasets:

• Census: U.S. demographic information in tabular format (type: database);
• Mingw: mingw software distribution (type: mix of source codes and binaries)7;
• Wikipedia: dump of English Wikipedia (type: natural language).

We note that our experiments only have the intention of commenting on the properties
and the e�ciency of the algorithmic choices made in the design of Brotli over some classic
and publicly available datasets. It goes without saying that Brotli is an open-source general-
purpose data compressor, so it can be used on any file type.

Since it is impractical to compute the set of all dominating copies for all positions in B, we
compare the set of dominating copies found by Brotli-FSG with those found by the algorithm
Fast-FSG proposed in [9, 10, 13]. This latter algorithm samples the set of dominating copies
in a very specific way: specifically, for each position i of which we want to compute the
7Thanks to Matt Mahoney – http://mattmahoney.net/dc/mingw.html.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

http://mattmahoney.net/dc/mingw.html

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Brotli: A general-purpose data compressor 0:13

dominating copies, it considers a set of K nested windows Wj = [i ≠ wj , i ≠ 1] where the
nesting property is satisfied by requiring that wj = –wj≠1 for some integral value – Ø 2;
then Fast-FSG finds, for each window Wj , the longest copies whose starting position falls in
Wj . Figure 1(b) provides an illustration of the dominating copies selected by Fast-FSG.

The comparison between the dominating copies found by Brotli-FSG and Fast-FSG consists
of comparing the frequencies of the selected LZ77-phrases taking windows of 4MiB for Brotli-
FSG, and 22 nested windows of maximum size 4MiB for Fast-FSG (hence w1 = 2, – = 2). For
ease of reading, these frequencies are illustrated by means of heatmaps in Figure 3–4, that is,
a Cartesian space where copy distances are mapped on the x-axis, copy lengths are mapped
on the y-axis, and each 2D-point is assigned a color that depends on the frequency of the
corresponding LZ77-phrase given by these two coordinates. However, some care has to be
taken in order to make the visualization illustrative and meaningful.

Firstly, notice that, if there is a phrase Èd, ¸Í starting at position B[i], then the phrases
Èd, ¸ ≠ 1Í, Èd, ¸ ≠ 2Í, . . . , and Èd, 1Í are also present in B starting at positions B[i + 1], B[i +
2], . . . , B[i+ ¸ ≠ 1]. So, if Èd, ¸Í has been found by Brotli-FSG, then most of these (nested and
shorter) phrases are also going to be generated; conversely, if Èd, ¸Í has not been generated,
then probably their nested copies are also not generated by Brotli-FSG. The same argument
applies to Fast-FSG. As a result we have that, if Brotli-FSG generates a long copy of length
¸ that Fast-FSG does not generate, then this di�erence is going to be reported ≥ ¸ times
in the di�erence of the heatmaps, which is inconvenient because it makes it di�cult to
understand whether a set of di�erences has been yielded by a long copy with many nested
copies or by many copies scattered around B. To overcome this issue, we filter the list
of LZ77-phrases returned by both strategies to include only the longest (leftmost) run of
LZ77-phrases starting in consecutive positions and with the same distance.

Secondly, since two distinct distances that are “close” in B should have on average

comparable frequency, it makes sense to consider them equivalent for this study. Hence, we
group the phrases filtered above into buckets, and consider that two phrases Èd, ¸Í and ÈdÕ, ¸Õ

Í

belong to the same bucket if ¸ = ¸Õ and Âlog2 dÊ = Âlog2 dÕ
Ê. For each bucket we compute the

number of copies that fall into it.
The plots are composed of squares, one distance-bucket long and one single copy-length

tall. Each square is assigned a color that encodes the di�erence of their frequencies: shades
of red indicate higher frequencies in that bucket of LZ77-phrases in Fast-FSG, while colors
towards blue-violet indicate higher frequencies in that bucket of LZ77-phrases in Brotli-FSG.

We concentrate hereafter on Census (see Figure 3), because the main conclusions we discuss
below can be drawn also from the plots of the other two datasets in Figure 4: Mingw and
Wikipedia. Not surprisingly, we notice that Fast-FSG has many more copies of length up to
four (shades of red in the left part of the plots) because of the “Top-Pruning” tweak adopted
by Brotli, which implies that no copy of length up to 4 and distance greater than 64 can ever
be found by Brotli-FSG. The other main di�erences are mostly grouped in four clusters: two
colored blue/purple (favouring Brotli-FSG) and two colored red/orange (favouring Fast-FSG).
Specifically, we have that Brotli-FSG finds more copies in the blue ellipsoid (distances up to
4, 096, lengths starting from 16) and in the green ellipsoid (distances starting from 2, 048,
lengths up to 16); while Fast-FSG finds more copies in the grey ellipsoid (distances less than
32 and copies longer than 4) and in the red ellipsoid (both far distances and long lengths).
The di�erences in the blue ellipsoid can be explained by noticing that Fast-FSG finds only
one copy per window, while Brotli-FSG does not have this limitation. This gives a substantial
advantage to Brotli-FSG, since finding more copies with small/medium distance and longer

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

0:14 Alakuijala, J. et al

Fig. 3. Di�erential heatmap of Fast-FSG minus Brotli-FSG over the dataset Census (with the four
quadrant highlighted with four ellipsoids, see comments in the text). Shades of red signals more copies
for Fast-FSG, while shades of blue/purple signal more copies for Brotli.

(a) Mingw (b) Wikipedia

Fig. 4. Di�erential heatmap of Fast-FSG minus Brotli-FSG over the two datasets Mingw and Wikipedia.
The colours follow the grading shown in Figure 3.

length can help the iterative shortest path computation pick up more copy patterns and
improve the empirical entropic cost of the parsing. The di�erences in the green ellipsoid
might have two explanations: either these additional copies are found because, as we just
mentioned, Fast-FSG is restricted to finding only one copy per window, or because these
copies are dominated by other (longer) copies, thus not generated by Fast-FSG. Notice that
Brotli-FSG might generate a dominated copy because the dominating ones could have been
“skipped” due to a previous long copy. The “skipping heuristic” can also explain the presence
of the grey ellipsoid. The red ellipsoid (favoring Fast-FSG) can be explained by the “pruning
heuristic” applied by Brotli-FSG, which removes farther su�xes from the Treap.

Starting from these hypothesis, we delved deeper in the analysis and distinguished four
types of copies, which are illustrated in Figure 5 over the dataset Census.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Brotli: A general-purpose data compressor 0:15

(a) Fast-FSG exclusive-position copies
(¥ 33.07% of copies in 7.30% of positions)

(b) Brotli-FSG dominated copies
(¥ 6.34% of copies in ¥ 1.1% of positions)

(c) Fast-FSG exclusive-bucket copies
(¥ 26.1% of copies in ¥ 7.40% of positions)

(d) Brotli-FSG excess copies
(¥ 25.07% of copies in ¥ 2.19% of positions)

Fig. 5. Detailed analysis for Census, with an explanation of the color scale in the bar above.

Fast-FSG exclusive-position copies: This measures the number of copies found by Fast-
FSG in positions that have been skipped by Brotli-FSG. First of all, we have counted
the number of positions that are skipped by Brotli-FSG, which varies greatly with
respect to the dataset: 72.2% for Census, 38.1% for Mingw and 12.1% for Wikipedia.
Then, looking at the heatmap illustrated in Figure 5(a) we notice that Fast-FSG
exclusive-position copies are probably not selected by the shortest path algorithm (and
thus by Brotli-FSG) because they are “covered” by a longer copy that induced the
skipping of that position. Overall, these copies take about 33% of the total number
of copies on Census (this percentage is 43% on Mingw and 11.5% on Wikipedia). The
consequence is that the number of skipped positions is not negligible and arguably has
a significant impact in speeding up the computation, making Brotli fast indeed.

Brotli-FSG dominated copies: This measures the number of dominated (and thus sub-
optimal) copies computed by Brotli-FSG because of the “skipping” and “copy elision”
strategies (as defined above). These are copies found by Brotli-FSG which are shorter
and farther than copies found by Fast-FSG for a given position. Looking at the heatmap
in Figure 5(b), we notice that the set of Brotli-FSG-dominated copies is low (i.e. about
6%), and thus it has an arguably small impact in the final compression ratio achieved
by Brotli. Moreover, they are distributed mostly uniformly at distances larger than 256

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

0:16 Alakuijala, J. et al

and more. This seems to suggest that the vast majority of these dominated copies are
the byproduct of the “skipping heuristic” that avoids the insertion of su�xes into the
Treap, since the minimum distance at which this can happen is 64.

Fast-FSG exclusive-bucket copies: This measures the number of dominating copies that
Brotli-FSG loses due to pruning, skipping, and copy elision. With respect to Figure 1(b),
these are the circled copies that are found by Fast-FSG but not found by Brotli-FSG.
Looking at the heatmap in Figure 5(c), we note that the number of times Fast-FSG
finds longer copies for a given distance-bucket (overall positions) is significant and
equal to 26% of the total copies (this figure is 39% for Mingw and 62% for Wikipedia),
but they are concentrated in less interesting parts of the plot: namely, for lengths up to
4 and distances longer than 1, 024. These copies are short and far, indeed. Therefore,
they arguably do not reduce Brotli-FSG’s decompression e�ciency and compression
ratio with respect to Fast-FSG.

Brotli-FSG excess copies: This measures the ability of the Treap to find more than one
copy for the same distance bucket. With respect to Figure 1(b), these are the un-
circled blue dominating copies that are found by Brotli-FSG and not by Fast-FSG. The
heatmap in Figure 5(d) confirms the conclusions derived from the di�erential heatmap
in Figures 3 that Brotli-FSG finds a greater number of copies in the “upper/middle-left”
quadrant of the plot: this is 25% of the total copies for Census (this figure is 19% for
Mingw and 11.8% for Wikipedia). These are useful copies because they are close to the
current position and have large copy-length.

Overall plots (a)–(d) show that for a substantial number of positions of the input meta-
block the two strategies actually return the same set of copies. In fact, the number of
positions where the copies found by the two approaches di�er can be bounded above by
about 18%, simply by adding the percentages of positions indicated in the captions of the
various sub-pictures of Figure 5. Since Fast-FSG is proved to find the dominating copies,
Brotli-FSG’s heuristic is also guaranteed to find most of them. Therefore, we can conclude
that the engineering tweaks introduced by Brotli’s Treap strategy do not hinder too much
the final compression performance. As far as the di�erences between the two strategies are
concerned, it can be inferred that Brotli-FSG is very e�ective at small distances, but it seems
to lose a share of interesting dominating copies occurring farther in the text. This seems to
suggest that a “hybrid” strategy mixing elements of the Treap with elements of the su�x
array-based strategy adopted in Fast-FSG might yield more e�ective results.

To test this hypothesis, we evaluated the compression ratio and decompression speed
obtained when using either Brotli-FSG, or Fast-FSG, or a “hybrid” strategy that combines
Brotli-FSG and Fast-FSG, over the three datasets with chunks of 4MiB (Table 1).8
In particular, this is the list of FSG strategies evaluated:

• Brotli-FSG: the Brotli-FSG strategy instantiated with a window of length equal to the
chunk size;

• Fast-FSG: the Fast-FSG strategy instantiated with w1 = 4, – = 2 and 20 nested levels;
• Brotli-FSG + Fast-FSG: a strategy that emits, for each position of B, the union of the

matches returned for that position by Brotli-FSG and Fast-FSG;

8We also repeated the experiments on chunks of 16MiB, and noticed, unsurprisingly, a slight improvement
in compression ratio at the cost of a slight decrease in decompression speed. We do not report them for ease
of reading.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Brotli: A general-purpose data compressor 0:17

Table 1. Compression performance with di�erent FSG strategies. We detail: compression ratio (ratio
between compressed size and dataset length, in %) and compression / decompression speed and the
di�erence in compressed size (�) with respect to Brotli with all optimizations enabled. Each dataset is
split in chunks of 4MiB, which are compressed individually.

Dataset FSG strategy C. Ratio Dec. Speed
(%) (MiB/sec)

Census

Brotli-FSG 3.51 512.86
Fast-FSG 3.46 525.43
Brotli-FSG + Fast-FSG 3.46 524.22
Brotli-FSG(1, 512) + Fast-FSG(512, 4M) 3.49 521.58
Brotli-FSG(1, 32K) + Fast-FSG(32K, 4M) 3.52 516.37

Mingw

Brotli-FSG 25.09 203.67
Fast-FSG 25.05 204.67
Brotli-FSG + Fast-FSG 25.05 205.03
Brotli-FSG(1, 512) + Fast-FSG(512, 4M) 25.07 204.26
Brotli-FSG(1, 32K) + Fast-FSG(32K, 4M) 25.10 203.78

Wikipedia

Brotli-FSG 18.87 214.14
Fast-FSG 18.87 214.49
Brotli-FSG + Fast-FSG 18.87 215.46
Brotli-FSG(1, 512) + Fast-FSG(512, 4M) 18.87 214.73
Brotli-FSG(1, 32K) + Fast-FSG(32K, 4M) 18.94 212.75

• Brotli-FSG(1, 512) + Fast-FSG(512, 4M): a strategy that returns, for each position of B,
all the matches with distance smaller than 512 provided by Brotli-FSG and, conversely,
matches longer than 512 provided by Fast-FSG for that position;

• Brotli-FSG(1, 32K) + Fast-FSG(32K, 4M): as before, but splitting at distance 32KiB
instead of 512.

From the figures we notice that the di�erences among the various strategies are quite
modest, being less than 1.4% with respect to Brotli-FSG on all datasets and chunk sizes. This
is not surprising if we consider that the di�erences in the set of returned matches between
Brotli-FSG and Fast-FSG are concentrated in few positions, as observed above.

As far as time e�ciency is concerned, Table 2 illustrates a break-down of the running
times of Brotli’s compression on chunks on 4MiB when using either the Brotli-FSG or the
Fast-FSG strategies. In particular, we report the overall time taken by the FSG step, the
(iterative) shortest path computation and all the optimizing steps performed in Phase II
(Section 4). We first observe that, even though Brotli-FSG has worse theoretical bounds
than Fast-FSG (namely, O

!
n2/ log n

"
vs O(n log n), Property 2), it is much more e�cient

in practice, being from 6 to 13 times faster than Fast-FSG: the Fast-FSG strategy needs to
compute the Su�x Array of the meta-block, taking about 3% of its total running time (hence
about 50% of Brotli-FSG), and about 4.8% for each of its 20 levels (one per nested window,
see the beginning of this section). The Fast-FSG might be accelerated by reducing the number
of levels and through a software engineering e�ort aimed at making the computation of one
level more time-e�cient. However, since on our datasets Brotli-FSG takes less than 12.5% of

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

0:18 Alakuijala, J. et al

the total compression time, we think that any improvement in this respect would have a
limited impact and thus suggest that any further e�orts in improving the time e�ciency
of Brotli compression be directed toward the other steps of the compression algorithm. An
obvious candidate is the shortest path computation, which takes around 52–81% of the total
compression time when using the Brotli-FSG strategy. These figures inspire some interesting
research directions that we report in Section 6.

Table 2. Running time breakdown of the various compression steps over chunks of 4MiB. For each step
we report, in parenthesis, its contribution to the total compression time (reported in the last column).

Dataset FSG strategy FSG Shortest Path Phase II C. Time
secs (%) secs (%) secs (%) secs

Census Brotli-FSG 234 (9.6%) 1,979 (81.5%) 216 (8.9%) 2,430
Fast-FSG 3,201 (59.7%) 1,952 (36.4%) 207 (3.9%) 5,361

Mingw Brotli-FSG 559 (9.7%) 3,011 (52.1%) 2,212 (38.3%) 5,783
Fast-FSG 3,904 (43.0%) 3,021 (33.3%) 2,157 (23.8%) 9,084

Wikipedia Brotli-FSG 653 (12.5%) 3,419 (65.6%) 1,142 (21.9%) 5,216
Fast-FSG 4,234 (48.3%) 3,420 (39.0%) 1,111 (12.7%) 8,766

4 PHASE II: COMPUTE A SUCCINCT ENCODING OF LZ-PHRASES
Brotli employs a variety of new techniques to improve the e�cacy of compressing the LZ77-
phrases selected in Phase I. We will concentrate on the most important ones, in a sequence
that recalls the way they are applied to compress the LZ77-phrases, then we will analyze
their impact on the overall compression performance by executing a large set of experiments
over the three datasets: Census, Mingw, Wikipedia. For more details we refer the reader to [1].

Static dictionary: the LZ77 dictionary is expanded with a static dictionary, about 100Kib
in size, which is embedded in the decompressor and thus does not have to be encoded
in the output compressed file. Multiple ad hoc methods have been used to generate a
set of candidate words; the ranking and final selection was done by calculating how
many bits of saving each word alone brought to a mixed (proprietary) corpus of small
files. At the end, each dictionary word has 121 di�erent forms, given by applying a
word transformation to a base word in the dictionary. These transformations are fully
described in [1], as well as the static dictionary, and they are much too complicated
to be reported here. Entries in the static dictionary are encoded via escape values

represented by means of distances larger than the maximum backward copy distance
at which a LZ77-phrase can reference its copy (hence they are outside the compression
window). In summary, any reference to the dictionary is represented as a triplet that
specifies the length of the copy (between 4 and 24), the index of the dictionary word
(according to the previously mentioned escape values), and the index of the word
transformation to be applied.

Relative pointers: Distance codes ranging from 0 to 15 are interpreted as sort-of-deltas

with respect to the distance of the previous phrase in the parsing: if dprev is the distance
of the previous phrase in the compressed stream, then a distance code of 0 is interpreted
as distance dprev; a distance code of 1 is interpreted as dprev + 1, 2 as dprev ≠ 1, etc.
Distance codes d from 16 onward are interpreted as d ≠ 16.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Brotli: A general-purpose data compressor 0:19

Blocks partitioning: Let S = ‡1, ‡2, . . . be a sequence of symbols in a meta-block to be
encoded. Recall that symbols can be of three types: literals, copy/literal lengths, or copy

distances; hence they can be any value of a component of the quadruples generated
by Brotli as LZ77-phrases. Block partitioning divides S into blocks and assigns to
each block a distinct Hu�man code that will be used for encoding its symbols. The
partitioning is obtained via an iterative optimization loop that is executed three times,
once for each symbol type, and eventually assigns to each block an id that denotes
the block type. The idea behind the iterative optimization loop is very similar to
the iterative computation of the SSSP in Phase I. The main routine takes a set of
Hu�man codes as input and then implements a dynamic programming strategy that
finds the optimal block partitioning for S under the assumption that S’s symbols
must be coded using these Hu�man codes. Clearly, this generally yields a non-optimal
solution because the input Hu�man codes might not be the ones derived from the
best partitioning. Therefore, the algorithm works in rounds: each round computes
the optimal block partitioning against a given set of Hu�man codes, then updates
those Hu�man codes, then another round is executed, for a total of 10 rounds, thus
balancing compression e�ectiveness and compression speed. The initial Hu�man codes
are built over a distribution derived from a few chunks sampled from S.

Blocks clustering: The optimization loop above does not account for the cost of serializing
the Hu�man trees: the amount of compressed space taken out by storing these trees
might not be negligible if the number of “similar” blocks and the cardinality of
their alphabets are not negligible either. To account for this, Brotli joins blocks (not
block types) with similar Hu�man codes in order to reduce their number. That is, it
(i) computes the optimal Hu�man code for each block; (ii) clusters di�erent blocks that
have “similar” Hu�man trees (see below); (iii) computes a new representative Hu�man
code for each cluster by computing the optimal Hu�man code on the union of their
blocks; (iv) assigns a cluster_id to each cluster; and (v) turns this cluster_id into
the block_id of its clustered blocks.
Technically speaking, the clustering algorithm takes as input a set of N Hu�man codes
and produces in output a (smaller) set of M Hu�man codes by keeping a priority
queue Q including pairs of Hu�man codes, sorted by the “space saving” induced on
the sequence S if the blocks compressed by the two codes were merged and one unique
Hu�man code were generated from the merged blocks. At the beginning, Q is initialized
with all possible pairs of Hu�man codes; then the clustering algorithm proceeds greedily

by merging the best pair of codes that are stored at the root of Q: as a result, this
new merged Hu�man code is inserted in Q, all pairs referring to the two originating
Hu�man codes are removed from Q, and new pairs referring to the new merged code
are inserted in Q. Since the algorithm has a time/space complexity quadratic in N ,
the clustering works first on chunks of 64 Hu�man codes (by considering all of their
2016 pairs), and finally it is applied to the Hu�man codes derived by those chunks.
The clustering stops when the improvement is not smaller than a given ratio (first
merging phase) or the number of clusters is not greater than 256 (second merging
phase). A few other optimizations are eventually applied and not described here. We
refer the reader to the code on GitHub and to the description in the RFC [1].

Encoder switching: There are two ways in which Brotli signals which Hu�man code must
be used at any time: through explicit switching, using block switches dispersed into the
compressed stream, and through contextual switching, as detailed below.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

0:20 Alakuijala, J. et al

(1) Explicit: A triple (Type, id, ¸) is stored in the compressed stream, called block switch,
to inform the decoder that the next ¸ symbols of kind Type (e.g. Type = Literal or
Type = CopyDistance) belong to a block with block_id id. For example, a block switch
(Literal, 3, 5) signals to the decoder that the next five literals belong to a block with
block_id 3. Notice that many di�erent blocks can be tagged with the same block_id,
because the same Hu�man code can be reused for di�erent blocks. The map between
block_id and the Hu�man tree to be used for these symbols is encoded in a context
map (see point 2 below). All the Hu�man trees to be used for encoding/decoding
blocks are stored at the beginning of the compressed meta-block.

(2) Contextual: For copy distances and literals (but not for copy lengths, which use
a single Hu�man tree), the choice of the Hu�man tree to encode the symbol ‡i

depends on its context. Symbols of di�erent kinds define “context” di�erently: for
literals, the context is given by its two preceding characters ‡i≠2 ‡i≠1, while for a
copy distance its context is given by the copy length of the same phrase (i.e., ¸). A
context map is encoded at the beginning of the compressed meta-block and it gives
the Hu�man tree to be used for encoding ‡i given its block_id and its context_id. In
particular the context_id is generated via a proper non-injective mapping onto the
co-domain [0, 63] whose technical details are provided in Section 7.1 of the RFC [1].

4.1 Experimental results
In this section we study the impact of the previously described compression techniques by
augmenting Brotli’s open-source reference with a set of suppression switches:

• NoDict: disables the static dictionary;
• NoRel: disables the encoding via relative pointers;
• NoPart(Dst), NoPart(Len) and NoPart(Lit): disables block partitioning for copy dis-

tances, copy lengths and literals, respectively; put di�erently, under this setting, there
will be only one block type for the selected symbols;

• NoContext(Dst) and NoContext(Lit): disables contextual compression for distances and
lengths, respectively.

We ran the experiments by first splitting each one of our three dataset into chunks of
4MiB and then compressing each chunk many times, each with a di�erent configuration of
the above switches. We performed every compression with quality level 11 (the highest). We
computed compressed sizes as the sum of the compressed sizes of the chunks; we computed
compression/decompression times in the same manner as well. We chose chunks of 4MiB
because we wish to consider a realistic scenario in which data has to be accessed randomly
and thus the chunk length is a common choice trading long, highly compressible chunks
and short, fast-accessible chunks. A complete picture with other chunk lengths, ranging
from 256KiB to 1GiB, and other configurations of the above switches can be found at
http://pages.di.unipi.it/farruggia/dcb/ and we now briefly comment on them.

We carried out our experiments with two di�erent machines: a virtualized 12-cores AMD
Opteron 6238 operating at 2,600MHz and 128GiB of DDR3 memory at 1,600MHz, used for
compression, and a “bare-metal” 6-cores Intel Xeon X5670 CPUs clocked at 2,933MHz and
with 32GiB of DDR3 memory at 1,333MHz, used for collecting decompression statistics.
Both machines run Ubuntu 14.04. We chose this dual-machine setting because compression
usually requires more time and memory than decompression, so we use a (virtualized) more
powerful machine to accelerate compression and a (bare-metal) less powerful machine to
obtain more accurate timings in decompression. This must be taken into account when

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

http://pages.di.unipi.it/farruggia/dcb/

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Brotli: A general-purpose data compressor 0:21

interpreting the compression/decompression timings that cannot be, hence, compared in
absolute terms because of the two di�erent experimental settings involved. We will always
refer to in-memory operations when evaluating compression/decompression speeds. An in-
memory compressor first fully loads the data in memory, then encodes/decodes it in memory,
and finally writes the result on disk; this way, the timing of the compression/decompression
step excludes any costly read/write from the disk. In order to fairly and accurately measure
times, we implemented a front-end compressor with a standardized CLI interface for every
compressor evaluated in this paper, using the publicly available APIs9. We compiled every
compressor with the same compiler (gcc 4.8.4) and with the same flags -O3 -NDEBUG
-march=native). Decompression times are the arithmetic mean of 10 decompressions, with
a cache wiping after each decompression.10

The following tables report experimental results according to the following notation:
compression ratio is computed as the ratio between compressed size and dataset length (in
%), compression/decompression speeds are measured as commented above, and the value
between parenthesis indicated with “(�)” reports the relative di�erence in percentage with
respect to the same value computed by Brotli with all optimizations enabled. We note that in
the following tables the higher the compression/decompression speeds are the better (hence,
positive �), while in the case of compression ratios we have an improvement for smaller
values of that ratio, so that we use the positive sign for � when it achieves smaller ratios.

Baseline comparison. Here we compare Brotli with no optimization against Brotli with all
optimization turned on.

Dataset Configuration Ratio (�) Compr. Speed Decompr. Speed
MiB/sec (�) MiB/sec (�)

Census Full 3.51 (0.0%) 0.29 (0.0%) 298.01 (0.0%)
NoOptimizations 4.09 (-16.5%) 0.62 (113.3%) 327.33 (9.8%)

Mingw Full 25.04 (0.0%) 0.11 (0.0%) 94.18 (0.0%)
NoOptimizations 28.24 (-12.8%) 0.39 (249.3%) 113.07 (20.1%)

Wikipedia Full 18.59 (0.0%) 0.14 (0.0%) 116.51 (0.0%)
NoOptimizations 20.33 (-9.3%) 0.35 (154.3%) 138.16 (18.6%)

Disabling all optimizations a�ects the compression ratio by a minimum of about 9.3% (Wiki)
to a maximum of about 28.2% (Census). Both compression and decompression speeds are
significantly a�ected by the use of all optimizations: compression is slowed down by a factor
of 1.1–2.5, while decompression is slowed down between 10–20%, which actually means a
slow down of 20–30MiB/sec.

Static dictionary. Improvements in compression ratio are quite modest across all our
datasets when the static dictionary is used: they range from 0% on Census (where the static
dictionary is actually used in a very limited way because of the tabular nature of Census) to
about 1.5% on Wikipedia. The impact on compression and decompression speeds is modest
as well.
9With the exception of PPMD, for which there is no publicly available API and therefore has been tested
using 7z’s implementation.
10The implementation of these front ends is available on GitHub: https://github.com/farruggia/random_decs.
All experimental data produced for this paper is collected and illustrated in a companion website reachable
at the address http://pages.di.unipi.it/farruggia/dcb.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

https://github.com/farruggia/random_decs
http://pages.di.unipi.it/farruggia/dcb

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

0:22 Alakuijala, J. et al

Dataset Configuration Ratio (�) Compr. Speed Decompr. Speed
MiB/sec (�) MiB/sec (�)

Census Full 3.51 (0.0%) 0.29 (0.0%) 298.01 (0.0%)
NoDict 3.51 (0%) 0.30 (2.7%) 297.95 (-0.0%)

Mingw Full 25.04 (0.0%) 0.11 (0.0%) 94.18 (0.0%)
NoDict 25.08 (-0.2%) 0.12 (3.3%) 94.72 (0.6%)

Wikipedia Full 18.59 (0.0%) 0.14 (0.0%) 116.51 (0.0%)
NoDict 18.87 (-1.5%) 0.15 (5.4%) 119.70 (2.7%)

However, it must be said that the static dictionary proves its e�ectiveness only over small
files, which occur frequently in the Web context scenario (pages, posts, etc.). Therefore,
we ran another experiment in which we split the same datasets into chunks of 64KiB. The
results below show that the static dictionary significantly a�ects the compression ratio on
small files that are well structured (e.g. XML) and with natural language content as it
occurs in Wikipedia, although this comes at the cost of a (almost equivalent) slow down in
decompression speed.

Dataset Configuration Ratio (�) Compr. Speed Decompr. Speed
MiB/sec (�) MiB/sec (�)

Census Full 4.01 (0.0%) 0.13 (0.0%) 427.00 (0.0%)
NoDict 4.01 (0%) 0.13 (4.7%) 426.76 (-0.1%)

Mingw Full 30.74 (0.0%) 0.08 (0.0%) 171.17 (0.0%)
NoDict 31.04 (-1.0%) 0.08 (0%) 175.45 (2.5%)

Wikipedia Full 22.80 (0.0%) 0.08 (0.0%) 149.63 (0.0%)
NoDict 25.15 (-10.3%) 0.08 (0%) 167.39 (11.9%)

Explicit encoder switch. Here we investigate the explicit Hu�man Tree switching mecha-
nism for literals (through suppression switch NoPart(Lit)), lengths (NoPart(Len)), distances
(NoPart(Dst)) and altogether (NoPart). Improvements in compression ratio range from 1.6%
in Wikipedia to 4.5% in Mingw, while the penalty in compression speed , which is about
40–70KiB/sec, is negligible. These improvements mainly come from the literal and length
explicit encoder switch, as distance encoder switching does not a�ect performance much,
both in compression ratio and compression/decompression speeds. Disabling explicit encoder
switching for all three kinds of symbols has a penalty close to the sum of each individual
penalty, suggesting that these optimizations are largely independent.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Brotli: A general-purpose data compressor 0:23

Dataset Configuration Ratio (�) Compr. Speed Decompr. Speed
MiB/sec (�) MiB/sec (�)

Census

Full 3.51 (0.0%) 0.29 (0.0%) 298.01 (0.0%)
NoPart 3.63 (-3.4%) 0.33 (12.3%) 306.45 (2.8%)
NoPart(Lit) 3.57 (-1.6%) 0.30 (4.2%) 300.98 (1.0%)
NoPart(Len) 3.56 (-1.4%) 0.31 (5.6%) 301.53 (1.2%)
NoPart(Dst) 3.53 (-0.5%) 0.30 (2.2%) 299.56 (0.5%)

Mingw

Full 25.04 (0.0%) 0.11 (0.0%) 94.18 (0.0%)
NoPart 26.16 (-4.5%) 0.18 (62.8%) 97.27 (3.3%)
NoPart(Lit) 25.58 (-2.2%) 0.15 (35.5%) 94.07 (-0.1%)
NoPart(Len) 25.43 (-1.6%) 0.12 (9.6%) 95.11 (1.0%)
NoPart(Dst) 25.22 (-0.7%) 0.12 (2.8%) 93.65 (-0.6%)

Wikipedia

Full 18.59 (0.0%) 0.14 (0.0%) 116.51 (0.0%)
NoPart 18.90 (-1.6%) 0.18 (27.1%) 120.51 (3.4%)
NoPart(Lit) 18.63 (-0.2%) 0.15 (8.8%) 117.25 (0.6%)
NoPart(Len) 18.71 (-0.6%) 0.15 (9.4%) 117.49 (0.8%)
NoPart(Dst) 18.75 (-0.8%) 0.15 (5.4%) 117.66 (1.0%)

Contextual encoder switch. This has a significant impact when applied on literals (around
1.6–4%), while on distances it brings little improvements (less than about 0.2%). In both
cases, compression and decompression speeds are not a�ected much.

Dataset Configuration Ratio (�) Compr. Speed Decompr. Speed
MiB/sec (�) MiB/sec (�)

Census

Full 3.51 (0.0%) 0.29 (0.0%) 298.01 (0.0%)
NoContext 3.65 (-4.1%) 0.29 (1.4%) 300.98 (1.0%)
NoContext(Lit) 3.65 (-4.0%) 0.29 (1.4%) 299.65 (0.6%)
NoContext(Dst) 3.51 (0%) 0.29 (1.3%) 297.61 (-0.1%)

Mingw

Full 25.04 (0.0%) 0.11 (0.0%) 94.18 (0.0%)
NoContext 25.49 (-1.8%) 0.12 (8.6%) 98.67 (4.8%)
NoContext(Lit) 25.45 (-1.6%) 0.12 (7.7%) 95.99 (1.9%)
NoContext(Dst) 25.08 (-0.2%) 0.11 (-0.4%) 94.89 (0.8%)

Wikipedia

Full 18.59 (0.0%) 0.14 (0.0%) 116.51 (0.0%)
NoContext 19.14 (-2.9%) 0.14 (1.5%) 123.99 (6.4%)
NoContext(Lit) 19.10 (-2.7%) 0.14 (1.2%) 123.05 (5.6%)
NoContext(Dst) 18.63 (-0.2%) 0.14 (0.5%) 117.25 (0.6%)

Contextual+Explicit switching. Here we evaluate the impact of disabling encoder switching
optimization on both literals and distances.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

0:24 Alakuijala, J. et al

Dataset Configuration Ratio (�) Compr. Speed Decompr. Speed
MiB/sec (�) MiB/sec (�)

Census
Full 3.51 (0.0%) 0.29 (0.0%) 298.01 (0.0%)
NoPart(Lit), NoContext(Lit) 3.69 (-5.2%) 0.30 (5.1%) 315.17 (5.8%)
NoPart(Dst), NoContext(Dst) 3.56 (-1.4%) 0.31 (7.1%) 300.41 (0.8%)

Mingw
Full 25.04 (0.0%) 0.11 (0.0%) 94.18 (0.0%)
NoPart(Lit), NoContext(Lit) 26.03 (-4.0%) 0.15 (34.3%) 105.77 (12.3%)
NoPart(Dst), NoContext(Dst) 25.47 (-1.7%) 0.12 (8.4%) 95.69 (1.6%)

Wikipedia
Full 18.59 (0.0%) 0.14 (0.0%) 116.51 (0.0%)
NoPart(Lit), NoContext(Lit) 19.24 (-3.5%) 0.15 (8.9%) 126.44 (8.5%)
NoPart(Dst), NoContext(Dst) 18.74 (-0.8%) 0.15 (9.7%) 118.48 (1.7%)

Switching on literals has an impact on compression e�ciency, ranging from a minimum
of about 3.5% on Wikipedia to a maximum of about 5.2% on Census. On the web pages
dataset (not shown here, see the accompanying website), the impact is even larger (around
7%) when considering longer blocks up to 16Mib. On the other hand, switching on distances
seems less significant, with a gain on compression ratio less than 2% on all datasets.

Switching consistently slows down compression by about 10–40KiB/sec. In decompression,
switching has a limited impact when done on distances, while on literals the impact varies
greatly across datasets, ranging from ≥ 17MiB/sec over 315MiB/sec on Census (5.8%) to
about 21MiB/sec over 105MiB/sec on Mingw (12.3%).

Relative pointers. The impact of using relative pointers is very significant:

Dataset Configuration Ratio (�) Compr. Speed Decompr. Speed
MiB/sec (�) MiB/sec (�)

Census Full 3.51 (0.0%) 0.29 (0.0%) 298.01 (0.0%)
NoRel 3.84 (-9.4%) 0.50 (71.6%) 303.48 (1.8%)

Mingw Full 25.04 (0.0%) 0.11 (0.0%) 94.18 (0.0%)
NoRel 26.41 (-5.5%) 0.15 (31.2%) 93.13 (-1.1%)

Wikipedia Full 18.59 (0.0%) 0.14 (0.0%) 116.51 (0.0%)
NoRel 19.08 (-2.6%) 0.21 (50.0%) 117.94 (1.2%)

Compression ratio improvements range from a minimum of ≥ 2.6% on Wikipedia to a
maximum of ≥ 9.4% on Census. Relative pointers improve compression whenever there are
copies in the input text with low edit-distance: while a standard LZ77-parsing needs to begin
a new phrase whenever there is an edit event (insertion, deletion, or substitution), Brotli only
encodes the number of inserted or deleted characters in the currently parsed phrase. This is
why the impact is the highest on Census, in which CSV-entries are very close syntactically.

The penalty on compression speed is significant as well: it ranges from about 31.2% on
Mingw (i.e. a di�erence of about 40KiB/sec) to a maximum of about 71.6% on Census (i.e.
a di�erence of about 210KiB/sec). Actually, this penalty is at times even higher, such as
238%, over a dataset composed of web pages and chunks of size up to 16 Mbs, as illustrated
on the aforementioned accompanying website containing the whole set of experiments.

On the other hand, the penalty on decompression speed is modest, topping at about 1.8%
on Census or about 4MiB/sec over ≥ 300MiB/sec in absolute terms.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Brotli: A general-purpose data compressor 0:25

Wrapping up. Brotli exhibits excellent compression ratios mainly by virtue of a compact
representation and two important optimizations:

(1) Relative pointers, which succinctly encode copies with low edit distance;
(2) Literal encoder switching, which aims at emulating prediction by partial matching

[19, 27] in the compression framework laid out by Brotli.
The results are briefly summarized in this table:

Option
enabled

Compression ratio
improvement

Compression
speed slowdown

Decompression
speed slowdown

Static dictionary < 1.5% < 10KiB/sec < 4MiB/sec

(chunks 64KiB) < 10.3% < few KiB/sec < 18MiB/sec

Relative pointers 2.6 ≠ 9.4% 40 ≠ 210KiB/sec < 4MiB/sec

Explicit switch 1.6 ≠ 4.5% 40 ≠ 70KiB/sec < 7MiB/sec

Context switch 1.8 ≠ 4.1% < 10KiB/sec < 7MiB/sec

Literal switch 3.5 ≠ 5.2% 10 ≠ 40KiB/sec 10≠17MiB/sec

Distance switch 0.8 ≠ 1.7% 10 ≠ 20KiB/sec 1 ≠ 2 MiB/sec

5 COMPARISON WITH STATE-OF-THE-ART
In the final experiment, we use the same files and the same experimental setting of the
previous sections to compare Brotli against several other compressors that are either “optimal”
in some scientifically accurate meaning (LZOpt, Booster), or are the most well-known members
of a data compression family (i.e. Gzip, Bzip2, PPMD), or are the state-of-the-art for high
decompression speed and very good compression ratio (i.e. LZHAM, LZFSE, Zopfli, xz, ZStd),
or are the state-of-the-art for the highest decompression speeds (i.e. LZ4, Snappy).

• Bzip2, Gzip: Boost implementation of these two well-known compressors. Source code
available at www.boost.org/doc/libs/1_62_0/libs/iostreams/.

• Booster: is the reference implementation of the Compression Booster technique proposed
in [11] based on the BW-Transform and aimed at turning a number of base 0-th order
entropy compressors into a k-th order entropy compressor. Precisely, here we tested
Range Encoding (yielding a compression format somewhat similar to Bzip2) and
Hu�man coding. Source code available at http://people.unipmn.it/manzini/boosting/.

• LZFSE: Apple’s implementation of the LZ77-strategy using the Finite State Entropy
(FSE) encoder inspired by the asymmetric numeral systems of [8] for squeezing LZ77-
phrases. Source code available at https://github.com/lzfse/lzfse.

• LZHAM: a LZ77-compressor engineered for high compression ratios at (relatively) high
decompression speeds. Source code available at https://github.com/richgel999/lzham_
codec_devel.

• LZOpt: is the e�cient implementation of the Bit-Optimal LZ77-strategy proposed
by [10, 13]. Source code available at ttps://github.com/farruggia/bc-zip.

• LZ4: a LZ77 compressor with excellent decompression speed. Source code available at
https://github.com/lz4/lz4.

• PPMD: an implementation of the PPM-compressor, which achieves among the highest
compression e�cacies. Source code available at http://www.7-zip.org.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

www.boost.org/doc/libs/1_62_0/libs/iostreams/
http://people.unipmn.it/manzini/boosting/
https://github.com/lzfse/lzfse
https://github.com/richgel999/lzham_codec_devel
https://github.com/richgel999/lzham_codec_devel
ttps://github.com/farruggia/bc-zip
https://github.com/lz4/lz4
http://www.7-zip.org

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

0:26 Alakuijala, J. et al

Table 3. Detailed performance of the most significant subset of the compressors illustrated in Figure 6.
For each compressor we detail: compression ratio (between compressed size and dataset length, in %),
compression / decompression speed and the di�erence in compressed size (�) with respect to Brotli with
all optimizations enabled. Each dataset is split in chunks of 4MiB, which are compressed individually.

Dataset Algorithm Configuration Ratio (�) Comp. Speed (�) Dec. Speed (�)
% (%) MiB/sec (%) MiB/sec (%)

Census

Brotli Full 3.51 (0) 0.27 (0) 633.10 (0)
NoOptimizations 4.09 (16) 0.56 (105) 730.28 (15)

LZOpt TNibble 4.65 (32) 0.79 (193) 1394.22 (120)
VByte-Fast 5.18 (48) 1.05 (288) 1571.34 (148)

LZ4 — 6.05 (72) 6.14 (2164) 3051.51 (382)

LZHAM Slow 3.52 (0) 0.18 (-34) 448.69 (-29)
Fast 3.56 (1) 0.18 (-34) 590.15 (-7)

ZStd — 3.65 (4) 0.17 (-38) 1339.48 (112)

Mingw

Brotli Full 25.04 (0) 0.11 (0) 221.94 (0)
NoOptimizations 28.24 (13) 0.35 (228) 271.13 (22)

LZOpt TNibble 31.61 (26) 0.67 (523) 505.33 (128)
VByte-Fast 34.65 (38) 0.80 (653) 741.68 (234)

LZ4 — 37.60 (50) 10.25 (9500) 1532.13 (590)

LZHAM Slow 25.53 (2) 0.18 (64) 171.02 (-23)
Fast 25.69 (3) 0.18 (64) 193.57 (-13)

ZStd — 26.45 (6) 0.74 (590) 433.81 (95)

Wikipedia

Brotli Full 18.59 (0) 0.13 (0) 229.38 (0)
NoOptimizations 20.33 (9) 0.31 (139) 271.23 (18)

LZOpt TNibble 22.61 (22) 0.65 (404) 444.32 (94)
VByte-Fast 26.18 (41) 0.79 (512) 649.97 (183)

LZ4 — 30.30 (63) 12.24 (9350) 1280.10 (458)

LZHAM Slow 19.62 (6) 0.15 (19) 175.66 (-23)
Fast 19.73 (6) 0.15 (19) 204.12 (-11)

ZStd — 19.84 (7) 0.78 (505) 361.73 (58)

• Snappy: a LZ77-compressor with high compression and decompression speeds. Source
code available at https://github.com/google/snappy.

• xz: an implementation of the LZMA/LZMA2 compression algorithms. Source code available
at https://tukaani.org/xz/.

• Zopfli: a pseudo-optimal LZ77-compressor that targets DEFLATE’s specification. Source
code available at https://github.com/google/zopfli.

• ZStd: another LZ77-compressor that deploys the FSE encoder, like LZFSE, but targeting
a di�erent trade-o�. Source code available at https://github.com/facebook/zstd.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

https://github.com/google/snappy
https://tukaani.org/xz/
https://github.com/google/zopfli
https://github.com/facebook/zstd

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Brotli: A general-purpose data compressor 0:27

Table 3 and Figure 6 report only the most important findings drawn from comparing Brotli
against all those other compressors. For a full picture we refer the interested reader to the
(already mentioned) accompanying website.11

By looking at the pictorial representation of the trade-o� between compression ratio and
decompression speed shown in Figure 6, we notice that the Pareto frontier is consistently
composed of Brotli at the leftmost part of the compression ratio spectrum, followed by
ZStd, then LZOpt and, at the rightmost part of the spectrum, by LZ4, which takes the spot
thanks to its incredibly fast decompression speed (by design). On linguistic files (such as
Wikipedia), PPMD takes a spot in the leftmost part of the Pareto frontier, but at the cost
of an extremely slow decompression speed that makes it an unsuitable candidate for most
applicative scenarios.

By looking at the numbers reported in Table 3, we draw the following conclusions:
• Brotli is more succinct than LZOpt: compression ratio gap ranges from 8% to 30%

when using TNibble as integer encoder, and from 21% to 42% when using VByte-Fast.
On the other hand, LZOpt is faster than Brotli by a factor in the range of 1.4–2.7 with
TNibble and 1.6–3 with VByte-Fast.

• Brotli is more succinct than ZStd up to about 7%, but ZStd is about twice as fast as
Brotli. However it must be underlined that Brotli uses smaller windows (by default),
its compression density and compression speed to a given density tend to be better,
it degrades less when many parallel connections are used, and actually the speed
di�erence wrt ZStd starts to have a meaning only when the transfer or loading speeds
exceed 1 Gbps.

• Brotli is much more succinct than LZ4, o�ering compression ratios that are as low as
half of those o�ered by LZ4. On the other hand, LZ4 exhibits decompression speeds on
the order of GiB/sec, an order of magnitude higher than what Brotli can o�er.

Another interesting compressor is LZHAM: it is both quite succinct and o�ers “medium”
decompression speeds. However its compressed space and decompression time are never part
of the Pareto-optimal frontier. In fact, it o�ers trade-o�s very similar to Brotli but it is
overall slightly less succinct and slightly slower in decompression: the gap in compression
ratio is up to about 6%, and the gap in decompression speed is up to about 30%.

6 CONCLUSIONS
After the birth of Brotli in 2013, there was a revamped interest among the industrial players
in the design of general-purpose data compressors. In the previous section we commented on
and experimented with Apple’s LZFSE and Facebook’s ZStd. We hope that our paper, all
these new compression tools, and the challenges posed by the processing, transmission, and
storage of Big Data will boost the interest of the scientific community in the algorithmic
issues underlying Brotli and those other compressors. We believe that much study has
yet to be done and many results are still to come that could o�er interesting performance
improvements to those tools and their deploying platforms.

This paper not only o�ers the first thorough, systematic description and analysis (both
algorithmic and experimental) of Brotli’s main compression steps, but also raises a few inter-
esting questions that deserve, in our opinion, some attention from the scientific community.
The following is a short and partial list of them:

11See http://pages.di.unipi.it/farruggia/dcb.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

http://pages.di.unipi.it/farruggia/dcb

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

0:28 Alakuijala, J. et al

(a) Census

(b) Mingw

(c) Wikipedia

Fig. 6. Graphical depiction of the compression ratio/decompression speed for all compressors we tested
in our experiments.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Brotli: A general-purpose data compressor 0:29

• The shortest path computation executed in Phase I (see Section 3.2) takes about
52–81% of the total compression time when using the Brotli-FSG strategy. A challenge
would be to speed it up and/or provide a principled analysis of the strategy implemented
in Brotli, or even to design a novel SSSP algorithm for entropic edge-weights possibly
inspired by the ideas in [15, 18].

• The block partitioning computation executed in Phase II (see Section 4) is based on
the heuristic proposed in the compressor Zopfli that is iterative and heuristic, and
has no mathematical guarantee. An interesting follow-up would be to deploy the result
in [12] to compute a block partitioning in just one round, by optimizing the sum of
the individual entropies of the generated blocks (hence, minimizing in some way the
final output produced by the related Hu�man codes). This has been already tried with
some success in Zopfli, and thus it could be promising in Brotli because this step
takes a considerable time of Phase II, i.e. about 9–38% of the total compression time
as illustrated in Table 2.

• We have not dealt with the issues related to the 12 quality levels that Brotli o�ers to
its users to trade compressed space for (de)compression time, and we did concentrate
our study only on the last one, which o�ers the best compression ratio by involving all
available optimizations. If we would plot the compression time/space trade-o� curve
achieved by various quality levels we would note that it is actually neither smooth nor
predictable. One important issue would thus be to make it smoother, especially for the
gap occurring between levels 9 and 10.

• The question of whether and how the Bicriteria scheme introduced in [9] can be applied
to Brotli is worth investigating, provided that here we cannot use universal encoders
and have to stick with the format of the compressed meta-blocks. How much can we
relax the various techniques introduced in Phase II to increase Brotli’s decompression
speed without sacrificing much its compression ratio?

These ones and the other avenues of research inspired by the results shown in the previous
pages are left to the creativity and problem solving ability of the readers.

REFERENCES
[1] Jyrki Alakuijala and Zoltan Szabadka. 2016. Brotli Compressed Data Format (RFC 7932). IETF:

Internet Engineering Task Force (July 2016). https://tools.ietf.org/html/rfc7932
[2] Brian Allen and J. Ian Munro. 1978. Self-organizing binary search trees. J. ACM 25, 4 (1978), 526–535.

https://doi.org/10.1145/322092.322094
[3] Michael A. Bender and Martin Farach-Colton. 2004. The Level Ancestor Problem simplified. Theor.

Comput. Sci. 321, 1 (2004), 5–12.
[4] Michael Burrows and David J. Wheeler. 1994. A block-sorting lossless data compression algorithm.

Technical Report. Digital Corp.
[5] Yann Collet. 2011. The compressor LZ4. https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
[6] Yann Collet. 2016. The compressor ZStd. http://www.zstd.net
[7] Lasse Collin. 2010. XZ Utils. https://tukaani.org/xz/
[8] Jarek Duda, Khalid Tahboub, Neeraj J. Gadgil, and Edward J. Delp. 2015. The use of asymmetric

numeral systems as an accurate replacement for Hu�man coding. In 2015 Picture Coding Symposium
(PCS). 65–69.

[9] Andrea Farruggia, Paolo Ferragina, Antonio Frangioni, and Rossano Venturini. 2014. Bicriteria data
compression. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014. ACM-SIAM, 1582–1595.

[10] Andrea Farruggia, Paolo Ferragina, and Rossano Venturini. 2014. Bicriteria Data Compression: E�cient
and Usable. In European Symposium on Algorithms (ESA), Vol. 8737. Lecture Notes in Computer
Science. Springer, 406–417.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

https://tools.ietf.org/html/rfc7932
https://doi.org/10.1145/322092.322094
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
http://www.zstd.net
https://tukaani.org/xz/

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

0:30 Alakuijala, J. et al

[11] Paolo Ferragina, Ra�aele Giancarlo, Giovanni Manzini, and Marinella Sciortino. 2005. Boosting textual
compression in optimal linear time. J. ACM 52, 4 (2005), 688–713.

[12] Paolo Ferragina, Igor Nitto, and Rossano Venturini. 2011. On Optimally Partitioning a Text to Improve
Its Compression. Algorithmica 61, 1 (2011), 51–74.

[13] Paolo Ferragina, Igor Nitto, and Rossano Venturini. 2013. On the bit-complexity of Lempel-Ziv
compression. SIAM J. Comput. 42, 4 (2013), 1521–1541.

[14] Rich Geldreich. 2010. The compressor LZHAM. https://github.com/richgel999/lzham_codec
[15] Eran Halperin and Richard M. Karp. 2005. The minimum-entropy set cover problem. Theor. Comput.

Sci. 348, 2-3 (2005), 240–250.
[16] Apple Inc. 2015. The compressor LZFSE. https://github.com/lzfse/lzfse
[17] Sanjay Je� Dean, Steinar Ghemawat, and H. Gunderson. 2011. The compressor Snappy. https:

//en.wikipedia.org/wiki/Snappy_(compression)
[18] Shmuel T. Klein. 2000. Improving static compression schemes by alphabet extension. In Proceedings of

the 11th Combinatorial Pattern Matching Conference (CPM). 210–221.
[19] Alistair Mo�at. 1990. Implementing the PPM Data Compression Scheme. IEEE Trans. on Communi-

cations 38, 11 (1990), 1917–1921.
[20] Igor Pavlov. 1998. The algorithm: Lempel-Ziv-Markov chain. https://en.wikipedia.org/wiki/

Lempel-Ziv-Markov_chain_algorithm
[21] David Salomon. 2007. Data Compression: the Complete Reference, 4th Edition. Springer Verlag.
[22] E. J. Schuegraf and H. S. Heaps. 1974. A comparison of algorithms for data base compression by use of

fragments as language elements. Information Storage and Retrieval 10, 9-10 (1974), 309–319.
[23] Raimund Seidel and Cecilia R. Aragon. 1996. Randomized search trees. Algorithmica 16, 4/5 (1996),

464–497.
[24] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-Adjusting Binary Search Trees. J. ACM

32, 3 (1985), 652–686. https://doi.org/10.1145/3828.3835
[25] Andrew Turpin and Alistair Mo�at. 2000. Housekeeping for prefix coding. IEEE Trans. Communications

48, 4 (2000), 622–628.
[26] Lode Vandevenne and Jyrki Alakuijala. 2013. Zopfli. https://github.com/google/zopfli
[27] I. H. Witten, A. Mo�at, and T. C. Bell. 1999. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishers. xxxi + 519 pages.
[28] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23, 3 (1977), 337–343.
[29] Jacob Ziv and Abraham Lempel. 1978. Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory 24, 5 (1978), 530–536.

A ON THE COMPUTATIONAL DIFFICULTY OF PROBLEM MELZ
In order to keep the discussion simple, yet su�ciently significant, we restrict our attention
to the case of an input string S whose alphabet � has size ‡ = �(|S|) and consider a variant
of the LZ77-parsing problem in which the first occurrence of every symbol c is encoded with
the phrase È0, cÍ, whereas all other phrases of the parsing have the form Èd, ¸Í, with d > 0.
It is clear that the cost of encoding the former type of phrases is fixed and thus it does
not enter in the optimization; moreover, it goes without saying that more technicalities are
needed to deal with the case of a constant-sized alphabet and the presence of individual
literals, but we defer this discussion to a follow-up theoretical paper. The main message of
this section is to give the intuition that the more general MELZ is computationally di�cult
by showing that the simple, yet significant, variant above is indeed NP-hard.

The NP-hardness proof is based on a reduction from the Minimum Entropy Set Cover

problem (MESC) introduced by Halperin and Karp [15]. An instance I = (U , F) of MESC
consists of a universe U of m elements u1, . . . , um and a family F of k subsets F1, . . . , Fk

of U . A covering f is a function f : U æ F which labels each element in U with a subset in
F that contains it.

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

https://github.com/richgel999/lzham_codec
https://github.com/lzfse/lzfse
https://en.wikipedia.org/wiki/Snappy_(compression)
https://en.wikipedia.org/wiki/Snappy_(compression)
https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
https://doi.org/10.1145/3828.3835
https://github.com/google/zopfli

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Brotli: A general-purpose data compressor 0:31

Definition 2. Given a universe U and a family F of subsets of U , the Minimum-Entropy
Set Cover problem (MESC) asks for a cover f that minimizes the entropy H0 of the sequence

(f (u1), . . . , f (um)).

Paraphrasing this definition, MESC asks for a labelling of the elements in U that can be
encoded in minimum space via an entropic coder.

Having said this, our polynomial-time reduction takes an instance I = (U , F) of MESC
and instantiates:

• a string S of length (2k + 1)m over an alphabet � of size ‡ = 3m;
• a mapping from LZ77-parsings fi of S to coverings ffi of I. The mapping returns an

optimal covering ffi for I if fi is a solution for the MELZ problem instantiated over S.
String S is defined as the concatenation of m widgets W1, . . . , Wm, one for each element
ui of U , such that Wi is a string over the sub-alphabet �i = {‡i

Y , ‡i
N , ‡i

S}. All �i are
pairwise-disjoint, and the string-widget Wi is defined as follows:

Wi = ‰(i, k) · · · ‰(i, 1) ‡i
S · · · ‡i

S¸ ˚˙ ˝
k times

A(i)

where A(i) = ‡i
Y and

‰(i, j) =

I
‡i

Y ui œ Fj

‡i
N otherwise

Let us call the symbols ‰(i, j) the characteristic symbols for the sets Fj , the symbols ‡i
S

the separator symbols and, finally, the last symbol A(i) the assignment symbol. The following
lemma states that A(i) must be copied from within Wi and easily follows from the following
observations: (i) each widget is expressed over a distinct alphabet, (ii) every element ui

belongs to at least one Fj (so it is ‰(i, j) = ‡i
Y), and (iii) recall that the LZ77-parsing fi

consists only of copy-phrases, because we have dropped from the analysis the first occurrences
of all symbols given their fixed total cost cost(�). Therefore, we have:

Lemma 1. For any LZ77-parsing fi of S which uses only phrase copies, each assignment

symbol A(i) of S induces an LZ77-phrase in fi which copies the assignment symbol A(i) from

some ‰(i, Ki) = ‡i
Y , in the same widget Wi, at a distance within the range [k + 1, 2k].

Lemma 1 allows us to define our mapping as follows: ffi (ui) = FKi . Moreover, given a
covering f of I a LZ77-parsing fi of the string S can be defined such that ffi = f : simply
copy A(i) from ‰(i, j) whenever f (ui) = Fj and parse the rest of S using (say) the classic
greedy strategy. In other words, our mapping from parsings to coverings is surjective in the
set of coverings of I. These simple observations are enough to prove the main result of this
section:

Theorem A.1. Solving the variant of MELZ in which parsings are formed by phrase

copies and first occurrences of every symbol (but not literal runs) is N P-Hard whenever the

string S is defined over an alphabet � with |�| = �(n).

Proof. We propose a reduction from MESC. Let � be the set of all LZ77-parsings of S

and let fiı be the (optimal) solution of the following minimization problem:

min
fiœ�

|fi| (H0 (lens(fi)) +H0 (dists(fi))) (1)

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

0:32 Alakuijala, J. et al

We now show that ffiı is an optimal covering of I. Let us rewrite the term H0 (dists(fi)) as
follows:

H0 (dists(fi)) =
kÿ

d=1

occ(d, fi)

|fi|
log |fi|

occ(d, fi)
+

2kÿ

d=k+1

occ(d, fi)

|fi|
log |fi|

occ(d, fi)

The second summation can be rewritten as follows:
2kÿ

d=k+1

occ(d, fi)

|fi|
log |fi|

occ(d, fi)
=

kÿ

j=1

occ(k + j, fi)

|fi|
log |fi|

occ(k + j, fi)

=
m

|fi|

Q

a
kÿ

j=1

occ(k + j, fi)

m

3
log m

occ(k + j, fi)
◊

|fi|

m

4R

b

=
m

|fi|

Q

a
kÿ

j=1

occ(k + j, fi)

m

3
log m

occ(k + j, fi)
+ log |fi|

m

4R

b

=
m

|fi|

Q

alog |fi|

m
+

kÿ

j=1

occ(k + j, fi)

m
log m

occ(k + j, fi)

R

b

=
m

|fi|

3
log |fi|

m
+H0 (ffi)

4

where the last two equalities come from the observation that only the assignment symbols
can be copied from distances in the range [k+1, 2k] (Lemma 1), so that

qk
j=1 occ(k + j, fi) =

m. By substituting this into the minimization formula (1) above we get:

min
fiœ�

|fi| ·

A
H0 (lens(fi)) +

kÿ

d=1

occ(d, fi)

|fi|
log |fi|

occ(d, fi)

B
+m log |fi|

m
+m H0 (ffi)

Observe that the term m H0 (f (fi)) only depends on the distance components of the copies
of the assignment symbols, which on the other hand do not a�ect the rest of the expression.
So fiı is an LZ77-parsing that achieves the following bound:

min
fiœ�

A
|fi| ·

A
H0 (lens(fi)) +

kÿ

d=1

occ(d, fi)

|fi|
log |fi|

occ(d, fi)

B
+m log |fi|

m

B
+min

fiœ�
H0 (ffi)

and, eventually, fiı must minimize (individually) the right expression H0 (ffi) over all LZ77-
parsings in �. According to above, f is surjective in the set of coverings of I, so that ffiı is
an optimal solution to MESC. ⇤

Received *****; revised ****; final version ******; accepted ****

ACM Transactions on Computer Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

View publication stats

https://www.researchgate.net/publication/329460780

	Abstract
	1 Introduction
	2 An overview of Brotli
	3 Phase I: Compute a good entropic LZ77-parsing
	3.1 The parsing strategy adopted by Brotli
	3.2 Experimental results

	4 Phase II: Compute a succinct encoding of LZ-phrases
	4.1 Experimental results

	5 Comparison with state-of-the-art
	6 Conclusions
	References
	A On the computational difficulty of problem MELZ

